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Adiposopathy

Is “Sick Fat” a Cardiovascular Disease?

Harold E. Bays, MD
Louisville, Kentucky

Being overweight or obese is a worldwide epidemic. Adiposity can cause fat mass-related cardiovascular disease
(CVD). Adiposity may also cause adipocyte and adipose tissue anatomic and functional abnormalities, termed adipos-
opathy (adipose-opathy) or “sick fat,” that result in endocrine and immune derangements. Adiposopathy may directly
contribute to CVD through pericardiac and perivascular effects on the myocardium and blood vessels. Adiposopathy
may also indirectly contribute to CVD through promoting or worsening major CVD risk factors such as type 2 diabetes
mellitus, high blood pressure, and dyslipidemia. Despite CVD being the most common cause of mortality among over-
weight individuals, the pathophysiologic relationship between adiposity and CVD is often thought mysterious, as evi-
denced by “obesity paradoxes.” Underlying this uncertainty are suggestions that excessive body fat does not always
increase the risk of CVD and, in some cases, may actually decrease such risks. These paradoxical findings are made
less paradoxical when the pathogenic potential of excessive body fat is assessed based on adipose tissue dysfunction
rather than simply on increased fat mass alone. This introductory review 1) provides a brief historical perspective of
the pathogenic potential of adipose tissue; 2) describes the relationships between adipose tissue (histology, embryol-
ogy, and adipogenesis) and cardiovascular medicine; 3) outlines the anatomic, functional, endocrine, and immune
manifestations of adiposopathy; and 4) describes the importance of cross talk and/or interactions of adipose tissue
with other body tissues. Finally, this review describes how “sick fat” helps account for various clinical obesity/cardio-
vascular paradoxes, supporting adiposopathy as a cardiovascular disease. (J Am Coll Cardiol 2011;57:2461-73)
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Adiposity is excessive adipose tissue. Those with adiposity
are characterized as being overweight or obese. Obesity is
described as an independent risk factor for cardiovascular
disease (CVD) (1). Adiposity is pathological to the cardiovas-
cular system through excessive fat-mass mechanisms and
through adipocyte and adipose tissue dysfunction (2) (Table 1,
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Fig. 1) Adiposopathy (or “sick fat”) is defined as pathologic
adipose tissue anatomic/functional disturbances promoted by
positive caloric balance in genetically and environmentally
susceptible individuals that result in adverse endocrine and
immune responses that may directly promote CVD, and may
cause or worsen metabolic disease. Because many of these
metabolic diseases are major CVD risk factors (e.g., type 2
diabetes mellitus [T2DM], high blood pressure, and dys-
lipidemia), adiposopathy also indirectly increases CVD risk
(3-6) (Table 2, Fig. 1) This review examines the relation-
ship between pathogenic adipose tissue, CVD, and CVD
risk factors.

Adiposopathy: A Historical Perspective

Despite the known relationship between adiposity and
metabolic disease (5), perceptions have lagged for decades in
acknowledging the pathologic potential of adipose tissue.
As early as the 1940s, reports described visceral adiposity as
increasing the risk of metabolic disease and CVD in men
(7). Reports from subsequent decades also supported the
pathogenic potential of adipose tissue (8,9), and identified
excessive adipocyte hypertrophy as promoting metabolic
disease (10,11). However, as late as the 1980s, the relation-
ship between adiposity and metabolic disease remained
elusive, as evidenced by the haunting term syndrome X,
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BMI = body mass index

which was not only cryptic in its
wording, but also confusing be-
cause it represented only 1 of
about 20 terms describing a sim-
ilar relationship (3,12). Ulti-
mately, the term metabolic syn-
drome was generally agreed upon
to describe a common clustering
of CVD risk factors that in-
cluded increased waist circumfer-
ence as a diagnostic criterion.
Even then, different international
scientific organizations had differ-
ent diagnostic criteria for the met-
abolic syndrome (13-15). Further-
more, in 2005, the American
Diabetes Association and the Eu-
ropean Association for the Study
of Diabetes issued a joint state-
ment questioning the clinical utility of the term metabolic
syndrome (16). Among reasons for the skepticism of this term
were 1) metabolic syndrome did not reflect a unified, patho-
physiologic process leading to clustering of metabolic disorders;
2) the diagnostic criteria was predominantly based on U.S. and
European data, which did not necessarily apply to other
populations (e.g., Asians) (3); 3) and the diagnosis of the
metabolic syndrome did not appear to be a better predictor of
future metabolic disease than the assessment of its individual
components (17).

In the early to mid-2000s, concurrent with debates
involving metabolic syndrome (18,19), was the undercurrent
of mounting evidence supporting (“confirming”) the meta-
bolic components of the metabolic syndrome as being due to
an underlying, unified pathophysiologic process (20). De-
cades of research supported adipose tissue pathology as
relevant to a “common soil” hypothesis (21). These findings
were consistent with the National Education Program,
Adult Treatment Panel III guidelines in which an increased
waist circumference (a surrogate for subcutaneous abdomi-
nal and visceral adipose tissue) was the only organ-
associated, anatomic diagnostic criteria for metabolic syn-
drome (with other metabolic syndrome components being
elevated glucose levels, high blood pressure, hypertriglycer-
idemia, and reduced high-density lipoprotein cholesterol
levels) (22). Furthermore, although the National Education
Program, Adult Treatment Panel III deemed =3 of any of
these 5 components as diagnostic for metabolic syndrome,
the International Diabetes Federation further validated the
importance of pathogenic adipose tissue by designating
increased waist circumference/central obesity as the only 1
of 5 criteria required for the diagnosis of metabolic syn-
drome (23), which then must be accompanied by other
metabolic abnormalities.

It was through decades of adipose tissue scientific re-
search and the acknowledgment of the importance of central
adiposity by major scientific organizations that the term

CVD = cardiovascular
disease

ECM = extracellular matrix

ER = endoplasmic
reticulum

PPAR = peroxisome
proliferator-activated
receptor

SAT = subcutaneous
adipose tissue

T2DM = type 2 diabetes
mellitus

VAT = visceral adipose
tissue
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adiposopathy arose (3). Cardiomyopathy describes the
pathologic enlargement of heart cells and the heart organ,
which results in anatomic/functional abnormalities leading
to adverse clinical consequences. Similarly, adiposopathy
describes the pathogenic enlargement of fat cells and fat
tissue, which results in anatomic/functional abnormalities
leading to adverse clinical consequences, including the most
common metabolic diseases encountered in clinical practice
(e.g., T2DM, high blood pressure, dyslipidemia) (24).
Given that adipose tissue has no less potential for disease
than any other body organ, the term adiposopathy is
intended to identify adipose tissue organ pathology similar
to the “opathies” of multiple other body organs (6). From a
clinician standpoint, recognizing the pathogenic potential of
adipose tissue may afford a clearer rationale toward recom-
mending weight reduction to overweight patients. In other
words, discussing how fat weight gain causes fat to become
“sick” and how losing body weight causes fat to become
more “healthy” might prove to be more productive than
discussing the individual diagnostic components defining
the metabolic syndrome (6).

Adipose Tissue Histology, Anatomy,
Embryology, and Adipogenesis

As with other body organs, adipose tissue anatomy and
functionality are interrelated. The reported histological
composition of adipose tissue is dependent on 1) individual
characteristics, such as age, race, sex, genetics, environment,
caloric balance, ingested food content, and physical activity;
2) the origin or location of the adipose tissue being analyzed;

E)'(amples of Adiposity anc! Adiposopat'hy
Disorders Related to Cardiovascular Disease
Adiposity-related*
Sleep apnea
Thromboembolic events
Increased blood volume
Increased cardiac output
Atrial enlargement
Ventricular dilation

Electrocardiogram abnormalities: increased heart rate, increased PR interval,
increased QRS interval, decreased QRS voltage (although sometimes
increased), increased QTc interval, abnormal signal-averaged
electrocardiogram late potentials, ST-T-wave abnormalities, left-axis
deviation, criteria for left ventricular hypertrophy, flattening of the T waves
(inferolateral leads), left atrial abnormalities, and false positive criteria for
inferior myocardial infarction

Adiposopathy-related*
Type 2 diabetes mellitus
High blood pressure
Dyslipidemia
Metabolic syndrome
Atherosclerosis

Cardiomyopathy (“fatty heart”)

*In some cases, the listed disorders may have both adiposity and adiposopathy-related
components.
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Adiposopathy: Simplified Relationship Between Pathogenic Adipose Tissue and Cardiovascular Disease

Adiposopathy is promoted by unhealthy nutrition and a sedentary lifestyle in genetically and environmentally predisposed individuals. With impaired adipogenesis of
peripheral, subcutaneous adipose tissue during positive caloric balance, existing fat cells may hypertrophy, circulating free fatty acids may increase, and lipids may be
deposited in nonadipose tissue organs (e.g., liver, muscle, possibly pancreas) resulting in lipotoxicity. Adiposopathic endocrine and immune responses may be directly
pathogenic to the cardiovascular system or otherwise interact with other body systems. If not mitigated by these other body organs, adiposopathy may indirectly cause
or promote major atherosclerotic risk factors (type 2 diabetes mellitus, high blood pressure, or dyslipidemia). Figure illustration by Craig Skaggs.

and 3) the techniques by which analyses are performed (e.g.,
aspiration or excisional biopsy) (25).

Adipocytes typically constitute the majority of adipose
tissue cellular content. Fat-containing adipocytes constitute,
by far, most of the adipose tissue volume. Adipocytes are
surrounded by fibrous connective tissue, collagen, nerves,
and blood vessels (1). Adipose tissue’s supporting frame-
work contains “stromal vascular fraction” cells, which in-

clude mesenchymal cells, fibroblasts, preadipocytes, endo-
thelial precursor cells, smooth muscle cells, blood cells, and
immune cells.

Adipose tissue—associated mesenchymal cells are espe-
cially applicable to cardiovascular medicine because cardio-
vascular and adipose tissue cells share a common lineage.
After fertilization of the ovum and mitotic divisions of the
zygote, the subsequent pluripotent stem cells give rise to
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Adiposopathy (“Sick Fat”): Summary
of Causality and Examples of Anatomic,
Pathophysiological, and Clinical Manifestations*

Table 2

Causes of adiposopathy
Positive caloric balance
Sedentary lifestyle
Genetic predisposition
Environmental causes
Anatomic manifestations of adiposopathy
Adipocyte hypertrophy
Visceral, pericardial, perivascular, and other periorgan adiposity
Growth of adipose tissue beyond its vascular supply
Increased number of adipose tissue immune cells
“Ectopic fat deposition” in other body organs
Pathophysiological manifestations of adiposopathy
Impaired adipogenesis
Pathological adipocyte organelle dysfunction
Increased circulating free fatty acids

Pathogenic adipose tissue endocrine responses (e.g., increased leptin,
increased tumor necrosis factor-alpha, decreased adiponectin, and
increased mineralocorticoids)

Pathogenic adipose tissue immune responses (e.g., increased
proinflammatory responses through increased tumor necrosis factor-alpha
and decreased anti-inflammatory responses through decreased
adiponectin)

Pathogenic interactions or pathogenic cross talk with other body organs
(e.g., liver, muscle, and central nervous system)

Clinical manifestations of adiposopathy
Hyperglycemia
High blood pressure
Dyslipidemia
Metabolic syndrome
Atherosclerosis
Fatty liver
Hyperandrogenemia in women
Hypoandrogenemia in men

Cancer

*Adiposity can result in both fat-mass pathology and fat dysfunctional abnormalities resulting in
adiposopathy.

endoderm, ectoderm, and mesoderm (Fig. 2). The meso-
derm may differentiate into hematopoietic tissue, kidney,
and sex organs, as well as mesenchymal stem cells (Fig. 2).
Mesenchymal stem cells may differentiate into skeletal
myoblasts, osteoblasts, chondroblasts, tenoblasts, marrow
stromal cells, neuron-like cells, and importantly, into cardi-
omyocytes, angiocytes, and adipocytes (26). Thus, adipose
tissue is a rich, nonembryonic source of mesenchymal cells
(27) whose relative ease in accessibility and capacity for
differentiating into heart and blood vessel cells have medical
applications to CVD regenerative medicine, tissue engi-
neering, and cell replacement therapies and represents a
potential therapeutic modality to repair post-ischemic or
infarcted heart tissue (28).

Beyond cardiovascular and adipose cells having common
stem cell origins, once mesenchymal stem cells are committed
to adipocyte formation, adipogenesis itself has relevance to
CVD. Previously, adipogenesis was thought to cease early in
life, resulting in a fixed number of adipocytes that predestined
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individuals to be lean or obese. However, fat-cell turnover is
now known to be a dynamic process by which mesenchymal
stem cells undergo lineage commitment, pre-adipocyte prolif-
eration, growth arrest, and terminal differentiation into mature
adipocytes. The number of adipocytes is therefore dependent
on the balance between adipogenesis and apoptosis (29,30),
with some suggesting that approximately 10% of fat cells are
renewed annually at all adult ages and at all levels of body mass
index (BMI) (31).

This has clinical implications because during positive
caloric balance, adipocytes normally undergo initial hyper-
trophy, which elicits cellular signaling for the recruitment,
proliferation, and differentiation of new fat cells. If adipo-
genesis proceeds unencumbered in peripheral subcutaneous
adipose tissue, then adiposity may not cause demonstrable
adipose tissue dysfunction or adverse metabolic conse-
quences. Conversely, if adipogenesis is impaired, then the
lack of adipocytes to adequately proliferate (or differentiate)
may be pathophysiologically analogous to a relative lack of
adipocytes, sometimes described as representing an acquired
lipodystrophy (32). The lack of excess energy storage in new
fat cells due to inadequate adipogenesis may cause existing
fat cells to undergo excessive hypertrophy, causing adipocyte
dysfunction and pathogenic adipocyte and adipose tissue
endocrine and immune responses (2) (Tables 3 and 4).

The concept of adipocyte hypertrophy during positive
caloric balance representing a failure of adipocytes to ade-
quately proliferate (32) is supported by findings that T2DM
is associated with a decrease in adipogenic gene expression
(34) and that T2DM patients have larger adipocyte size but
decreased adipocyte cellularity compared with obese pa-
tients without T2DM (35). In short, if during positive
caloric balance, any stage of the adipogenic processes is
impaired (recruitment, proliferation [36] or differentiation
[35,37,38]), then this may lead to pathologic adipose tissue
endocrine and immune responses that contribute to meta-
bolic disease, particularly in individuals who are genetically
or environmentally predisposed (2) (Fig. 1).

Fat Depots

The clinical importance of adiposity is not only how fat is
stored (i.e., adipocyte proliferation vs. adipocyte hypertro-
phy), but also where fat is stored. Visceral adipose tissue
(VAT) may be more metabolically active than subcutaneous
adipose tissue (SAT), and these depots inherently differ in
processes involving lipolysis/lipogenesis, expression of adi-
pocyte receptors, and differ in the secretion of adipokines/
cytokines, enzymes, hormones, immune molecules, pro-
teins, and other factors (2). Derangements in adipose tissue
endocrine and immune processes contribute to metabolic
disease (4).

Fat depots other than VAT have pathogenic potential
(39,40). Pericardial, subcutaneous abdominal, perimuscular,
perivascular, orbital, and paraosseal fat depots also have lipo-
lytic and inflammatory activities (2). Pericardial and perivascu-
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m Simplified Diagram of the Common Embryonic Origin of Heart, Blood Vessels, and Adipose Tissue

Through the formation of mesenchymal stem cells, cardiomyocytes, angiocytes, and adipocytes share a common genetic lineage. Figure illustration by Craig Skaggs.

lar adiposopathy may have direct pathogenic effects on the
myocardium, coronary arteries, and peripheral vessels via dys-
regulated local secretion of vasoactive and inflammatory factors
that may contribute to atheroma instability and other cardio-
vascular pathophysiology (41—45). Pericardial adiposity is
strongly associated with coronary atherosclerosis in African
Americans with T2DM, which may contribute to ethnic
disparities in atherosclerosis susceptibility (46). Finally, al-
though often assumed that atherosclerosis is exclusively an
intraluminal, subendothelial, lipid-mediated process, patho-
genic pericardial and perivascular adipose tissue may directly
contribute to atherosclerosis through an “outside to inside”
inflammatory atherogenic model (41-43), which is again

supported by the strong association between pericardial adipose
tissue and coronary artery calcification (47).

Extracellular Matrix Remodeling,
Angiogenesis, and Hypoxia

In addition to how fat is stored and where fat is stored, other
determinants of the pathogenic potential of expanding
adipose tissue include the interdependent physiologic pro-
cesses of angiogenesis and extracellular matrix (ECM)
remodeling (2). If an increase in fat storage results in
excessive adipocyte enlargement, then adipocyte hypertro-

phy may contribute to intracellular hypoxia (48,49). Addi-
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Adipose Tissue as an Endocrine Organ:
Adipocytes and Adipose Tissue Produce Factors
Actively Involved in Metabolic Processes
Important for Human Health*

Table 3

Angiogenesis

Adipogenesis

Extracellular matrix dissolution and reformation
Lipogenesis

Growth factor production

Glucose metabolism

Production of factors associated with the renin-angiotensin system
Lipid metabolism

Enzyme production

Hormone production

Steroid metabolism

Immune response

Hemostasis

Element binding

Adipose tissue has receptors for traditional peptides and glycoprotein hormones,
receptors for nuclear hormones, other nuclear receptors, receptors for
cytokines or adipokines with cytokine-like activity, receptors for growth
factors, catecholamine receptors, and other receptors.

Data from Bays et al. (2) and Bays et al. (33). *Disruption of adipose tissue endocrine function may
contribute to metabolic disease.

tionally, when fat accumulation outpaces angiogenesis, then
a relative lack of blood flow may result in both cellular and
adipose tissue hypoxia (49,50). As with other body tissues
(e.g., heart), cellular and tissue adipose hypoxia contributes
to cellular and organ dysfunction (51), contributes to pro-
inflammatory responses, and all may contribute to the onset
or worsening of metabolic disease (52). For example, if
periadipose ECM remodeling is impaired due to relative
hypoxia or other adipocyte dysfunction, then further fat
storage may be physically limited, resulting in increased
circulating free fatty acids and lipotoxicity. Furthermore,
hypoxia-driven inflammation may promote ECM instability
(53), and excessive synthesis of ECM components may
impose long-term interference with cell-cell contact and
adipogenic signaling mechanisms, and thus persistent ad-
verse cellular responses even after weight loss (54).

Free Fatty Acids and Lipotoxicity

If during positive caloric balance, adipocytes are unable to
store excess energy (mostly in the form of triglycerides),
then circulating free fatty acids are increased, causing
pathologic disruption of nonadipose tissue organs, such as
the liver, muscle, pancreas, and blood vessels. Potential
adverse metabolic consequences of lipotoxicity (55) include
abnormalities of glucose and lipid metabolism (5,56), and
high blood pressure (57).

Although VAT is most recognized as a contributor to
metabolic disease, the majority of circulating free fatty acids
actually originates from SAT, mainly because SAT is the
largest fat depot, constituting ~80% or more of total body
fat. Even within large vessel drainage of VAT (which
sometimes constitutes ~20% of body fat), the majority of
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free fatty acids in the portal system may originate within
SAT (38,58), which may contribute to lipotoxic effects on
the liver, with adverse clinical consequences such as hyper-
glycemia and dyslipidemia (4). So while VAT is generally
considered among the most pathogenic fat depots (2,59,60),
if SAT fat storage is limited or impaired during positive
caloric balance and if SAT net free fatty acid release is
increased into the circulation, then this SAT dysfunction
may adversely affect nonhepatic organs (59,60), resulting in
lipotoxicity to muscle (causing insulin resistance) and the
pancreas (possibly reducing insulin secretion) (2,61,62).

Adipose Tissue as an Active Endocrine
and Immune Organ

Excessive adipocyte hypertrophy disrupts the normal phys-
iological function of fat-cell organelles (causing adipocytes
to become “sick”), as evidenced by increased markers of
intracellular endoplasmic reticulum (ER) stress and mito-
chondrial dysfunction (49,63,64). The ER is a network of
interconnected tubules, vesicles, and cisternae that, among
other functions, produce protein and lipids and transport
proteins and carbohydrates necessary for normal cellular
function. Increased markers of adipocyte ER stress are
associated with inflammation, cellular dysfunction, and
metabolic disease (65). Mitochondria are membrane-
enclosed organelles that contain enzymes responsible for

Adipose Tissue as an Immune Organ:
Adipocytes and Adipose Tissue Produce Factors
Actively Involved in Immunological Processes
Important for Human Health*

Table 4

Pro-inflammatory adipose tissue factors
Factors with cytokine activity include adipsin, IL-1B, IL-6, IL-8, IL-17D, IL-18,
leptin, MCSF-1, MCP-1, MMIF, resistin, tumor necrosis factor-alpha,
RANTES, VASPIN

Acute phase response proteins include AGP, ceruloplasmin, C-reactive protein,
haptoglobin, IL-1RA, lipocalins, metallothionein, pentraxin-3, PAI-1, and
serum amyloid A

Proteins of the alternative complement system include adipsin, ASP,
complement C3 and B

Chemotactic/chemoattractants for immune cells include eotaxin,
interferon inducible protein, MCSF-1, MCP-1, MMIF, RANTES, resistin,
stromal-derived factor 1, VAP-1, and VCAM-1

Eicosanoids/prostaglandins such as prostaglandin E,
Anti-inflammatory adipose tissue factors

Adiponectin

Annexin-1

IL-6 and -10

Transforming growth factor-beta

Bone morphogenic factor

Nitric oxide

IL-1 receptor antagonist

*Adipose inflammatory factors are produced by adipocytes and adip tissue- d macro-
phages. An increase in adipose tissue inflammatory response and a decrease in anti-inflammatory
response may contribute to metabolic disease.

AGP = alpha-1 acid glycoprotein; ASP = acylation-stimulating protein; IL = interleukin; MCP =
monocyte chemoattractant protein; MCSF = macrophage colony-stimulating factor; MMIF =
macrophage migration inhibitory factor; PAl = plasminogen activator inhibitor; RANTES = regu-
lated on activation, normal T-cell expressed and secreted; VAP = vascular adhesion protein;
VASPIN = visceral adipose tissue-derived serpin; VCAM = vascular cell adhesion molecule.




JACC Vol. 57, No. 25, 2011
June 21, 2011:2461-73

transforming nutrients into cellular energy through the
production of adenosine triphosphate. Increased markers of
adipocyte mitochondrial stress are associated with obesity,
insulin resistance, and T2DM (66).

Among the adverse consequences of adiposity-induced
“sick fat” (5,6) is a disruption of physiological endocrine (6)
and immune function (39), which, in turn, contributes to
metabolic disease (2,67-69). The mechanisms by which
adiposopathic endocrine and immune responses contribute to
T2DM, high blood pressure, dyslipidemia, and other meta-
bolic disorders (4,5), and mechanisms explaining how nutri-
tion, physical activity, drug therapies, and bariatric surgical
interventions improve metabolic disease (33,70-74) are be-
yond the scope of this discussion. Nonetheless, Tables 3 and 4
list examples of adipose tissue endocrine and immune func-
tions whose disruption may contribute to metabolic disease.

Adipose Tissue Cross Talk and Interactions
With Other Body Organs

A misconception of an adipocentric paradigm is that it fails
to account for the pathophysiological role of nonadipose
organs. Although adipocyte and adipose tissue dysfunction
are often etiologic, adiposopathy alone does not cause or
worsen metabolic disease. Instead, the clinical consequences
of “sick fat” depend on how adipose tissue interacts or
undergoes “cross talk” with other body organs such as the
liver, muscle, pancreas, as well as organs of the cardiovas-
cular, endocrine, immune, nervous, genitourinary, gastroin-
testinal, integumentary, and other body systems (5).
T2DM, high blood pressure, and dyslipidemia often have
defined causes (3) (Table 5). However, the exact “cause” of
most instances of these metabolic diseases are ill defined.
What is well defined is that the prevalence of these major

Examples of Diseases Other T_han_Adiposopathy
That Cause Common Metabolic Diseases

Type 2 diabetes mellitus

Hemochromatosis

Chronic pancreatitis

Hypercortisolism

Excessive growth hormone

Genetic syndromes of insulin resistance

Genetic syndromes of decreased pancreatic function
High blood pressure

Pheochromocytoma

Primary hyperaldosteronism

Hypercortisolism

Hyperthyroidism

Renal artery stenosis

Various kidney diseases

Familial or genetic syndromes
Dyslipidemia

Untreated hypothyroidism

Poorly controlled diabetes mellitus

Certain types of liver or kidney diseases

Genetic dyslipidemias
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cardiovascular risk factors markedly increase with increasing
body weight (5). The accumulation of adipose tissue (adi-
posity) and dysfunctional adipose tissue (adiposopathy)
contributes to most, if not all, cardiometabolic risk factors
(75). Recognizing the pathogenic potential of adipose tissue
not only helps describe the relationship between adiposity
and metabolic disease, but also provides a scientific founda-
tion as to why treatment of adiposopathy often improves
metabolic disease (73). This concept also helps validate the
“emerging concept is that the development of anti-obesity
agents must not only reduce fat mass (adiposity) but must
also correct fat dysfunction (adiposopathy)” (76).

In but 1 example, adiposopathy increases circulating free
fatty acids. If the liver and muscle are “inflexible” (limited)
in their ability to metabolize increased free fatty acid influx,
then this may cause “lipotoxic” intraorgan and intracellular
accumulation of lipid metabolites (e.g., fatty acyl coenzyme
A, diacylglycerol, ceramide), which contributes to insulin
resistance (2,55). The pancreas and arterial tissues maybe
adversely affected as well, possibly causing beta-cell dys-
function and accelerated atherosclerosis, respectively
(55,77). In fact, “inflexible” intraorgan triglyceride concen-
tration may distinguish obese individuals in whom meta-
bolic abnormalities develop from obese individuals in whom
none develop (78).

Conversely, if organs such as the liver are able to
overcome lipotoxicity through inherent hyperflexibility or
through the use of therapeutic agents such as peroxisome
proliferator-activated receptor (PPAR) gamma agonists
(2,55), then the onset or worsening of metabolic disease
may be mitigated. Some investigators suggest that if adi-
posity occurs without intraorgan (e.g., intrahepatic) fatty
infiltration, then the onset or worsening of metabolic
disease may be averted (79). They conclude that 1) the
characteristics of adipose tissue are more important than the
amount of body fat in determining the risk of obesity-
related metabolic disease; 2) insulin resistance is associated
with increased fat-cell size, increased adipose tissue lipolytic
activity, adipose tissue inflammatory cell infiltration, adi-
pose tissue hypoxia, and adipose tissue ER stress; and 3) the
accumulation of ectopic fat in other organs, particularly the
liver, might be a marker of adipose tissue pathology (79), as
might occur in patients with adiposopathic responses to
positive caloric balance.

Adiposopathy and Aging

Irrespective of age, adiposopathy increases the prevalence of
metabolic disease and CVD risk factors (80,81). However,
adiposopathy and aging share analogous pathophysiologies.
From a cellular standpoint, both adiposopathy and aging
can increase markers of intracellular ER stress and mito-
chondrial dysfunction (49,63—66,82—84), and both are as-
sociated with impaired adipogenesis (2,85). From a clinical
standpoint, both adiposopathy and aging: 1) are risk factors
for CVD, T2DM, high blood pressure, and dyslipidemia;
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2) promote endocrinopathies, such as increased free fatty
acids (86) and reduced testosterone levels in men (87,88);
and 3) both may promote immunopathies such as increased
C-reactive protein (2,89). When stratified based on age and
BMI, the relationship between adiposopathy and aging is
complex, as evidenced by the variable association of meta-
bolic syndrome components (90). Adverse oxidative reac-
tions are also shared by adiposopathy (91) and aging (92).
Oxidation creates unstable oxygen free radicals and other
reactive oxygen species that create biomolecular instabilities
toxic to cells. If reactive oxygen species production exceeds
a biological system’s ability to detoxify them, then this
“oxidative stress” may contribute to metabolic disease and
atherosclerosis (91).

Adiposopathy as a Conceptual Resolution
of the Obesity Paradox

Various obesity paradoxes are described when increased
body fat mass does not increase morbidity or mortality,
when a decrease in excessive body fat does not improve
patient health, or when an increase in body fat mass actually
reduces morbidity or mortality. Many of these apparent
clinical contradictions are mitigated if the pathogenic po-
tential of excess adipose tissue is assessed not solely by
adiposity, but also by adiposopathy.

Not all obesity paradoxes are due to adiposopathy (93).
However, many obesity paradoxes are less paradoxical if
adipose tissue is accepted as being more than an inert
storage organ. For example, not all overweight patients
develop metabolic disease and not all patients with meta-
bolic disease are overweight (5). This paradox is best
explained when understanding that fat weight gain most
often contributes to the onset or worsening of metabolic
disease when accompanied by pathogenic adipocyte and
adipose tissue anatomic, endocrine, and immune responses
in genetically and environmentally susceptible patients
(2,4,5,39,94). This also helps explain paradoxical popula-
tions described as “metabolically healthy, but obese” (95),
“metabolically obese, normal weight” (95), and the increased
risk of T2DM among Pima Indians (2,96). Adiposopathy
also helps explain the otherwise curious (paradoxical) use of
“ectopic fat” to describe excessive fat deposition in any body
organ, including increased fat deposition in fat depots (e.g.,
visceral adipose tissue) (55,73,97), and helps identify when
adiposity or obesity might best be considered a disease
(6,98,99).

Cardiovascular risk paradox. The susceptibility to adipos-
opathy provides an explanation for the high prevalence of
T2DM, the metabolic syndrome, and CVD among Asians,
particularly those from the South and East Asian subcon-
tinent (2,3). Asian Indians have an increased adipocyte size,
fewer adipocytes (100,101), increased visceral adiposity
(102), increased circulating free fatty acids (103), increased
leptin levels (103,104), increased pro-inflammatory factors
(e.g., increased C-reactive protein levels) (105), and de-
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creased anti-inflammatory factors (e.g., decreased adiponec-
tin) (103,104), which lead to increased insulin resistance
(103) and increased CVD risk (106). Genetic susceptibility
helps account for the common clinical finding that many
patients of Asian descent have metabolic disease, even when
not markedly overweight (100). This has prompted inter-
national organizations to suggest that Asians should have
different cutoff points for the determination of overweight
and obesity (107).

Similarly, adiposopathy helps explain why, for the same
age and weight, men have higher rate of CVD compared
with women. During positive caloric balance, men often
expand lower body fat through the more pathogenic process
of adipocyte hypertrophy, whereas women typically undergo
the less pathogenic process of adipocyte hyperplasia (108).
Furthermore, men often store excessive fat in an “android”
or “apple” (i.e., visceral) distribution, whereas women often
store fat in a “gynoid” or “pear” (i.e., peripheral subcutane-
ous) distribution. These differences in adipose tissue expan-
sion and fat depot accumulation may help explain the sex
paradox (109), in which, when corrected for various demo-
graphic factors (such as age), men have higher CVD risk
than women (2,7,29,110).

Finally, it is clinically relevant that not all body fat gain

worsens cardiovascular risk or risk factors. Benign multiple
symmetrical lipomatosis is manifest by increased fat accu-
mulation in the SAT regions of the arms, legs, shoulders,
and neck. Despite adiposity, typically glucose or lipid
disorders do not develop in patients, a finding most likely
due to increased proliferation of small adipocytes in SAT
and the increased secretion of anti-inflammatory adipo-
kines, such as adiponectin (111).
Cardiovascular event and cardiac procedure paradox. Mod-
estly overweight individuals may live longer than those who
weigh less (112), possibly because patients with reduced
body weight often have illnesses with high mortality (e.g.,
chronic heart disease, cancer) (113). However, studies have
consistently suggested that modestly overweight patients
have reduced morbidities and mortality after diagnosis of
CVD, after experiencing a CVD event, and/or after under-
going CVD procedures (114-122).

This CVD paradox may be risk factor dependent. Re-
garding the CVD risk factor of sedentary lifestyle, over-
weight and obese men may have increased longevity only if
they are physically fit (123). Cigarette smoking reduces body
weight, but is a major CVD risk factor. CVD patients who
smoke have an increase in all-cause mortality compared with
those who quit smoking (124), especially if they have
chronic lung disease, which would tend to further decrease
body weight (117). Thus, despite lower body weight in
cigarette smokers, their CVD risk is increased. Patients with
chronic heart failure may have no survival benefit with
obesity if they have the major CVD risk factor of T2DM
(125). Most CVD patients have “normal” or only modest
elevations in cholesterol (another CVD risk factor) (126),
yet have a high prevalence of other adiposopathy-associated
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CVD risk factors (127). But, although the CVD associated
with the adiposopathy-related CVD risk factors may be
more frequent, the morbidity and mortality associated with
nonadiposopathy-related CVD pathology may be more
clinically adverse. In other words, many patients with
genetic dyslipidemias (e.g., familial hypercholesterolemia)
are not overweight, yet have a disproportionately high rate
of premature cardiovascular morbidity and mortality. Thus,
although adiposopathy-induced CVD may be more com-
mon, the morbidity and mortality with nonadiposopathy-
induced CVD may be much worse. Finally, mortality
among those with CVD is directly associated with central
obesity and inversely associated with BMI (128). Given that
central or visceral adiposity is an anatomic manifestation of
“sick fat,” this supports the concept that adiposopathy may
be a more rational treatment target than adiposity alone
(129).

Yet another potential explanation of the CVD risk/
obesity paradox is that establishing an independent relation-
ship between adiposity and CVD is challenging because of
the confounding effects of covariants, comorbidities, and
concomitant drug treatments (130). Due to adiposity-
related illnesses, overweight patients may receive more
frequent medical care and have greater access to global
preventive care, which may reduce morbidity and mortality.
Many overweight patients have metabolic diseases that
prompt treatment with metabolic drug treatments proven to
reduce CVD morbidity and, in some cases, treatments
proven to reduce cardiac and overall mortality (131). For
example, the extent to which reducing hyperglycemia in
T2DM reduces atherosclerotic cardiovascular events is un-
clear (5). However, patients with T2DM are not only
treated with glucose-lowering therapies, but often aggres-
sively treated with antihypertensive, lipid-altering, and even
antithrombotic therapies that conceivably reduce cardiovas-
cular morbidity and mortality relative to matched nonover-
weight patients without T2DM, many of whom may not be
treated with such agents.

Finally, adiposity may be associated with enhanced car-
diovascular autoreparative potential. Overweight individuals
may have greater availability of adipose tissue-associated
mesenchymal cells that upon release, could conceivably reduce
CVD morbidity. After an acute CVD event, reparative circu-
lating mesenchymal cells (originating from tissues such as
adipose tissue, bone marrow, and blood vessels) (Fig. 2)
migrate to the injured myocardial site (132,133). In their
naive state, adult stem cells may have a limited reparative
benefit in patients with ischemic heart disease. Pre-emptive
lineage pre-specification through guided cardiopoiesis may
be needed to optimize therapeutic outcomes (134). Adipos-
ity signaling promotes the recruitment of adipocytes from
adipose tissue-associate mesenchymal cells (135). Thus, the
presence of adiposity may promote an increased number of
progenitor cells available for mobilization into the circula-
tion and potentially enhance adipose tissue mesenchymal
differentiation into cells more apt to undergo either cardio-
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poiesis or adipogenesis (i.e., not yet solely committed to
adipogenesis). If so, then an increase in the circulatory
release of mesenchymal cells during cardiac injury (or
possibly cardiac procedures) might have a greater potential
for cardiovascular autorepair. Supporting this mechanism is
that abnormally expanded fat tissue increases the mobiliza-
tion of endothelial progenitor cells, which may have a
protective effect against vascular atherosclerosis in obese
patients (136).

Fat gain and fat loss cardiovascular risk factor paradox.
From a cardiovascular treatment standpoint, a paradoxical
clinical scenario is adding fat as a means to treat diseases
often associated with too much fat (33). PPAR-gamma
agonists increase the recruitment, proliferation, and differ-
entiation of functional fat cells in SAT relative to VAT
(2,54,70). Increased adipogenesis helps account for how
PPAR-gamma agents increase body fat, improve adipocyte
function, lower glucose levels in patients with T2DM,
reduce heptatic steatosis (55,137), and helps explain how
some PPAR gamma agents improve lipid parameters (138)
and potentially reduce CVD risk (139).

Adiposopathy also helps explain why not all body fat loss
improves cardiovascular risk factors. Inherited lipodystrophy
is characterized by a variable lack of body fat and impaired
adipose tissue function (e.g., low adiponectin levels and
inability to adequately store fat). Because of limited fat
storage potential, lipodystrophic patients have high circu-
lating free fatty acids that contribute to lipotoxicity and
metabolic disorders such as hyperglycemia and dyslipidemia
(2). Lipoatrophic mice have virtually no white adipose tissue
and, as a consequence, severe hyperglycemia. Surgically
implanting adipose tissue markedly improves hyperglyce-
mia, hyperinsulinemia, and muscle insulin sensitivity (140).
Surgical removal of VAT through omentectomy plus ad-
justable gastric banding may improve glucose metabolism
(oral glucose tolerance, insulin sensitivity, and fasting glu-
cose and insulin levels) more than adjustable gastric banding
(141). Conversely, liposuction of SAT may not improve
CVD risk factors such as hyperglycemia, high blood pres-
sure, and dyslipidemia (142). Finally, antiretroviral therapy
sometimes results in human immunodeficiency virus lipo-
dystrophy. Despite weight loss, patients may experience
insulin resistance and dyslipidemia, which may be due to the
greater loss of SAT relative to VAT (143).
Cardiovascular clinical trial paradox. Adiposopathy may
also help explain why overweight patients with elevated
markers of inflammation and no major cardiovascular risk
factors may, paradoxically, not be “healthy.” The JUPITER
(Justification for the Use of Statins in Primary Prevention:
An Intervention Trial Evaluating Rosuvastatin) trial was a
landmark CVD outcome trial of 17,802 “apparently healthy
men and women” with low-density lipoprotein cholesterol
levels <130 mg/dl and high-sensitivity C-reactive protein
levels =2.0 mg/l who were randomized to rosuvastatin 20
mg/day or placebo. The conclusion was that rosuvastatin

significantly reduced CVD in “apparently healthy persons
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without hyperlipidemia but with elevated high sensitivity
C-reactive protein levels” (144). However, baseline median
BMI was ~28 kg/m2 (a BMI =25 kg/m2 is considered
overweight; a BMI =27 mg/m2 with comorbidities is a
cutoff point to consider weight-loss drug therapy) (145).
Also at baseline, metabolic syndrome was present in 41% of
study participants. One interpretation of the study results
was that elevated C-reactive protein is not only a marker of
vascular inflammation, but also plays a direct role in the
pathogenesis of atherosclerosis and thrombosis (146,147).
An alternative interpretation is that adiposopathy (a “dis-
ease”) was present at baseline in many study participants, as
supported by the high mean BMI, the high percentage of
study participants with metabolic syndrome, and the ele-
vated C-reactive protein. The latter is supported by the
findings that C-reactive protein may be directly released
from adipose tissue (148). Perhaps more importantly, ex-
cessive body fat increases adipose tissue release of
interleukin-6 (2), which stimulates increased C-reactive
protein production from the liver (2,4). It seems plausible
that the increased C-reactive protein level found among
many JUPITER study participants was significantly due to
pathogenic adipose tissue immune responses. Thus, within
the adiposopathic paradigm, many of the study participants
were not “healthy persons.” Many study participants had
evidence of adiposopathy, which may directly and indirectly
promote CVD. Finally, it is of interest that a reduction in
inflammatory markers (e.g., interleukin-6, C-reactive pro-
tein) with statins may, in part, be due to statin-induced
reductions in adipose tissue inflammation (149,150).

Conclusions

Adiposopathy or “sick fat” is a cardiovascular disease.
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ville Metabolic and Atherosclerosis Research Center, 3288 Illinois
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