Perioperative Management of Elderly Patients

Lisa L. Schlitzkus, MD, Alyson A. Melin, DO, Jason M. Johanning, MD, Paul J. Schenarts, MD*

KEYWORDS
- Elderly • Geriatric • Perioperative management • Surgery • Frailty
- Preoperative care • Postoperative care

KEY POINTS
- The older population is rapidly growing and living longer, and this growth is expected to drastically increase surgical demand for both elective and emergent cases.
- The elderly population undergoes significant changes of numerous organ systems as a result of the aging process; their tenuous homeostasis can be drastically unraveled by minor changes in the perioperative period.
- The perioperative management of the elderly population is complex and requires a multi-disciplinary team focusing on education, frequent assessment, functional status, and quality-of-life outcomes as well as traditional outcome measures.
- There remains a paucity of best-practice guidelines and randomized control trials focusing on the elderly; there are growing data investigating frailty indices as predictors of outcomes in perioperative elderly patients.

INTRODUCTION

Because of longer life expectancies and the aging baby boomer generation, the growth of the aging American population at this time is unprecedented.1–3 One out of every 7 Americans is older than 65 years, and there has been a 21% increase in this age group over the past 10 years.1 With a life expectancy of about 20 years, the older population (65+ years) is becoming older. Since 1900, the 65- to 74-year age group is 10 times larger; the 75- to 84-year group is 17 times larger; and the group aged 85 years and older is 48 times larger.1 The centenarian population has had a 93% increase since 1980, a larger percentage increase than the total population.1

None of the undersigned authors have any conflict of interests to report.
Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE 68198-3280, USA
* Corresponding author.
E-mail address: Paul.Schenarts@unmc.edu

http://dx.doi.org/10.1016/j.suc.2014.12.001
surgical.theclinics.com
0039-6109/15/$ – see front matter © 2015 Elsevier Inc. All rights reserved.
Moreover, the older population has the highest incidence rate for 60% of operations compared with other age groups. It is predicted that the amount of procedure-based work in general surgery will grow by 31% by 2020 because of the growing older patient population. These patients often are not the healthiest, with multiple comorbidities, malnutrition, frailty, and little reserve. As the elderly become our primary surgical population, we will need to understand the differences in their physiology as we are challenged with their perioperative care.

ASSESSMENT OF OPERATIVE RISK

Geriatric patients now compose a significant number of patients undergoing surgical intervention in the United States, and many of these patients undergo operative procedures in the last year of their life. The geriatric surgical population with its unique physiology and response to surgical insult poses challenges in perioperative assessment. It is now well established that frailty is a strong predictor of perioperative complication and mortality in surgical patients. Frailty is a recognized geriatric syndrome with no agreed on or recognized definition unfortunately. For the sake of surgical understanding, the most important definition would be an inability to tolerate physiologic insult. What is better known, however, is that frailty can be defined by specific indicators, including cognitive, functional, social, and nutritional function. Varying measures of these functional areas are now recognized as strong predictors of perioperative outcomes.

As frailty is now recognized as a strong predictor of postoperative outcomes in multiple specialties, it is imperative to recognize frailty in geriatric surgical patients. Therefore, one must be able to assess frailty before operations and be familiar with the tools to assess frailty. A stepwise approach to assessing frailty will be the accepted approach in the future. This approach will consist of a screening tool to identify those patients who are potentially frail based on a bedside screen of frailty characteristics. If patients have findings consistent with frailty, a more formal assessment in the form of the comprehensive geriatric assessment would be in order to provide for a more detailed workup and provide for shared decision making, surgical buy-in, discussion about increased morbidity and mortality compared with younger patients, and ultimately bring the surgical team together to increase communication in high-risk patients. The comprehensive geriatric assessment is a multidisciplinary process that serves to identify limitations in frail patients in an effort to develop a coordinated treatment plan to optimize their management. The assessment accounts for functional independence—caring for themselves in their environment, which is usually the most important factor to geriatric patients—maintaining quality of life. This multidisciplinary assessment results in patients less likely to require nursing home admission as demonstrated in a randomized controlled trial. Fried and colleagues describe a phenotype (Fried-Hopkins frailty index):

- Shrinking
- Weakness
- Poor endurance and energy
- Slowness
- Low physical activity level

When combined with other standard prediction models (American Society of Anesthesiologists, Lee, and Eagle scores), the Fried phenotype improved the predictive power of the usual models; when used alone for elective operations, it showed an increased risk of complications, length of stay, and discharge to facility.
assessment tools to date include the Rockwood-Robinson frailty index,\(^7,14\) and assessments of gait speed,\(^15\) grip strength,\(^16\) and initiation of movement.\(^17\) These specific tools help clinicians to recognize additional risk factors compared with younger, nonfrail surgical patients. It is imperative that risk factors be defined preoperatively using an appropriate geriatric risk assessment to allow for a candid and a more accurate discussion with elderly patients regarding their risk of surgical intervention and outcomes.

Another related but distinct concept to be aware of in geriatric patients is that of sarcopenia. Sarcopenia is distinctly different from frailty with areas of overlap in the relationship primarily with regard to nutrition with markedly decreased muscle mass compared with age-matched controls. This decreased muscle mass similar to frailty is correlated with markedly increased risks of mortality and complications.\(^18,19\) Sarcopenia, in contrast to frailty, has more defined measurement tools consisting of hand grip strength and psoas or total abdominal muscle area as measured by computed tomography scan. Similar to frailty, sarcopenia seems reasonable to assess, specifically in specialties whereby frail patients are not routinely considered for major surgical intervention (transplant, cardiac surgery). Cachexia is a metabolic syndrome associated with underlying illness leading to muscle loss. An upregulation of interleukin 1 (IL-1), IL-6, and tumor necrosis factor–alpha is observed leading to lipolysis, muscle breakdown, and anorexia.\(^20,21\) Sarcopenia, present in half of patients older than 80 years,\(^22\) not only involves the loss of muscle mass but also the loss of strength and functionality.\(^23,24\)

PHARMACOKINETICS

The normal aging process results in changes in body composition and essentially all tissues. These changes significantly influence the pharmacologic effects and dosing of analgesic and anesthetic medications.

As the body ages, there is a shift in body mass from muscle to adipose tissue. This progressive adiposity is also associated with a loss of lean body mass and a decrease in total body water, making appropriate dosing of medications challenging. The expansion of adipose tissue increases the reservoir of lipid-soluble agents, contributing to the protracted clearance and increased duration of action for benzodiazepines, volatile agents, narcotics, and sedative-hypnotics.\(^25\) In addition, the decrease in total body water decreases the volume of distribution for water-soluble medications, resulting in higher average and peak plasma concentrations.\(^26\) This condition ultimately results in an exaggerated drug effect. For example, the initial volume of distribution for thiopental in patients aged 20 to 40 years is 15 to 30 L; however, this decreases to 3 to 7 L in patients aged 60 to 90 years.\(^27\) The end result is that the dosing of many anesthetic drugs needs to be reduced. Complicating matters further, geriatric patients frequently suffer from malnutrition. Medications such as propofol and diazepam are highly bound to albumin. Low albumin levels can result in increased levels of free drug and subsequent increased sensitivity to these drugs.\(^28\)

In addition to changes in body composition, age-related changes to the anatomy and physiology of various organs also influence the use of various medications. The kidneys lose approximately 10% of parenchymal thickness per decade of life.\(^29\) Between 20 and 90 years of age, a 50% decrease in renal blood flow contributes to a 30% to 50% decrease in glomerular filtration rate.\(^26,29\) Simultaneously, there is a decrease in hepatic mass by 20% to 40% and a decline in hepatic blood flow with advancing age.\(^30\) This age-related impairment in renal and hepatic function affects the metabolism and excretion of multiple analgesic, sedative, and anesthetic agents.
The loss of neurons and decline in cognitive function in the elderly may increase the sensitivity to certain medications. These neuronal changes result in increased sedation and cardiorespiratory depression at lower blood concentration levels. In contrast, the elderly may also have a higher threshold for pain perception. Another consideration in the elderly is delayed drug absorption from the gastrointestinal tract, which leads to an inconsistent dose response relationship.

It has been estimated that 40% of elderly patients take 5 or more different medications per week, and up to 19% use 10 or more medications per week. This polypharmacy and drug-drug interactions are additive to the age-related changes in body composition and organ function rendering pharmacologic management in the elderly very challenging.

ANALGESIA IN THE ELDERLY

Narcotics are the mainstay of pain control. As a result of age-related increases in adipose tissue, narcotics and other lipophilic medications have a relatively larger reservoir and should be anticipated to have a prolonged or inconsistent effect. Elderly patients have been shown to have a 2-fold higher sensitivity to ventilatory depressive effects of opiates compared with younger patients. Therefore, in the elderly, it is recommended to use a balanced (or multimodal) analgesic approach, which can minimize the adverse effects of opioids. Using a combination of local anesthetics, acetaminophen, nonsteroidal antiinflammatory drugs (NSAIDs), steroids, and nontraditional analgesic agents is safe and efficacious in this age group. White and colleagues have comprehensively reviewed the use of this strategy in the elderly.

Local Anesthetics

The preemptive, adjunctive use of a subcutaneous or intra-articular local anesthetic has been demonstrated to reduce narcotic use. The utility of adding epinephrine to prolong the duration is well known. However, the addition of clonidine, ketorolac, methylprednisolone, or dexamethasone also prolongs the duration of the local analgesic effect.

Acetaminophen

Despite reduced hepatic function, acetaminophen has been shown to be safe in the elderly and does not require dosage adjustment compared with younger patients.

Nonsteroidal Antiinflammatory Drugs

The effectiveness of NSAIDs for prevention of postoperative pain and reducing narcotic requirement is well known. However, the complications of these agents, such as platelet dysfunction, gastrointestinal bleeding, and kidney injury deserve special attention in the elderly.

Steroids

In addition to combining steroids with local anesthetics, steroids alone or as part of a multimodal regimen also have a beneficial effect on pain control. Although there were no increased bleeding complications with this strategy, there may be an additional benefit of decreasing postoperative nausea and vomiting.

Nontraditional Analgesic Drugs

Several nontraditional agents have been shown to improve pain management in the postoperative period. Ketamine (in a single dose, as an infusion during surgery, or
as part of a multimodal approach) has been demonstrated to reduce postoperative pain and narcotic consumption and decrease the development of chronic pain.47,48 The efficacy of adding gabapentin to a multimodal strategy for pain control may be useful, but the associated sedation and dizziness may limit its use in the elderly.49,50 Alpha-2-agonists (ie, dexmedetomidine) have long been known to have an anesthetic-sparing effect but are now being used in the perioperative period where they have decreased fentanyl use, improved postanesthesia care unit length of stay, and decreased postoperative emesis.51,52 Although not frequently considered to augment pain control, esmolol infusions have also been demonstrated to decrease opioid usage in the postoperative period.53,54

ANESTHESIA CONSIDERATIONS IN THE ELDERLY

Peripheral Nerve Blocks

Properly done, this approach is an excellent anesthetic in the elderly because it is site specific with few side effects. The use of peripheral nerve block offers better postoperative pain control, decreased opioid requirement, and increased patient satisfaction.28 One potential downside of this approach is a documented higher risk of permanent nerve damage in elderly patients.55

General Anesthesia

Although fragile patients with multiple comorbidities may be best served by local or regional anesthesia, this is not true for most elderly patients. In a study of 800,000 patients, Arbous and colleagues56 found that advanced age was not an independent risk factor for serious morbidity or mortality in patients undergoing general anesthesia. However, anesthetic management needs to be individualized for elderly patients. For example, when using propofol in the elderly, a lower induction dose is needed;57 the slower blood-brain circulation results in a slower onset and delayed maximal cardiopulmonary depressive effect.58 As a result of less compliant vasculature, the elderly are also more prone to develop hypotension with this agent.28 The use of inhalational anesthetics also needs to be adjusted in the elderly. For every decade after 30 years of age, there is a 7% increase in the potency of inhalational agents.59 In particular, desflurane offers more rapid recovery than other agents in this age group.28,60

Spinal and Epidural Anesthesia

The use of spinal or epidural techniques may be appropriate in the elderly; but the side effects of hypotension, dizziness, and delayed ambulation may especially have negative impacts in the elderly.55 Additionally, given that prostatic hypertrophy is nearly universal in elderly men, this approach may be problematic.

POSTOPERATIVE COGNITIVE IMPAIRMENT IN THE ELDERLY

The importance of postoperative central nervous system dysfunction after surgery in the elderly is coming into greater focus. The basic science mechanisms underlying this are complex and beyond the scope of this publication. However, the work by Hussain and colleagues61 provides an excellent overview of the topic. Two cognitive syndromes have been described in elderly postoperative patients: postoperative delirium (POD) and postoperative cognitive dysfunction, which differ with respect to onset, manifestations, and permanency.
Postoperative Delirium

POD occurs shortly after surgery and is an acute change in cognitive status characterized by fluctuating attention and consciousness as well as abnormalities in memory and perception. It is estimated that the incidence of POD in older adults occurs between 36.8% and 73.5%. Although common, this well-recognized clinical entity is associated with a prolonged hospital stay, delayed functional recovery, and increased morbidity and mortality.

Pathophysiology

In general the pathophysiology of delirium is caused by an absolute or relative lack of the neurotransmitter acetylcholine or an excess of dopamine. There are, however, multiple other contributing factors in play, including hypoglycemia; hypoxia; cytokines associated with the stress response; medications, such as penicillin, vasoactive agents, and tranquilizers; as well as histamine (type 2) blockers. Dehydration and hypoperfusion are frequent causes of delirium in the elderly. Delirium may also be the only finding in the elderly suffering from a postoperative infection.

The relative contributions of the surgical procedure and the type of anesthetic used yield interesting results. The inflammatory response and the resultant cognitive deficits are caused more by the operation than the use of a general anesthetic. Likewise, the use of a general anesthetic did not confer a higher risk of POD compared with regional anesthesia in a meta-analysis.

Risk Factors

Although preexisting psychiatric diseases, withdrawal from alcohol, nutritional deficiencies, and anticholinergic medications predispose the elderly to delirium, many of these are interrelated; it is difficult to identify the specific culprit. Inouye and colleagues have identified 5 independent risk factors in the elderly: baseline dementia, vision impairment, physical restraints, functional impairment, and several comorbidities.

Diagnosis

Delirium is chiefly characterized by acute onset, disorientation, disorganized thought and speech, disrupted sleep-wake cycle, memory disturbance, clouded consciousness, and hallucinations and elusions that last for days to weeks. Several bedside cognitive function tests, such as the Mini-Mental Status Examination, the Abbreviated Mental Test, and the Confusion Assessment Method are easy to perform and are useful in confirming the diagnosis and following the level of improvement or decline.

Prevention and Treatment

To reduce dopamine levels in order to prevent delirium, it would be reasonable to give haloperidol preoperatively. The prophylactic use of haloperidol demonstrated a reduction in the duration and severity of delirium but unfortunately not the incidence. Rapid correction of dehydration and infectious cause will be beneficial in preventing delirium from developing. Continuation of eyeglasses and hearing aids should also be of utmost importance.

Once delirium has developed, the best acute treatment is haloperidol. This drug can be dosed starting at 0.5 mg and repeated every 15 to 30 minutes to a maximum dosage of 20 mg every 24 hours. If this is not effective, the addition of low-dose lorazepam, 0.5 mg up to 6 mg per 24 hours, can be used. In addition to medication, frequent reorientation, normalization of the sleep-wake cycle, and increased daytime activities may also be beneficial.
Postoperative Cognitive Dysfunction

Unlike POD, postoperative cognitive dysfunction (POCD) occurs days to weeks after surgery and is characterized by impairment of memory, concentration, and social integration. Also unlike POD, POCD is milder but may remain a permanent disorder. As a result, the implications of POCD have significant socioeconomic implications because of the increased need for long-term care. Following noncardiac surgery, 25% of patients were demonstrated to have POCD. Although this improved to 10% at 3 months postoperatively, this is still a significant percentage far out from an operation. Like POD, POCD is also associated with an increased mortality.

Pathophysiology

Little is understood about the pathophysiologic mechanisms that cause POCD.

Risk Factors

The specific risk factors for the development of POCD are still under investigation. It is likely that there are multiple contributing factors. Unlike POD, there is an increased risk associated with general anesthesia and inhalational anesthetics but no difference between desflurane versus servoflurane. Similar to POD, patients with multiple medical problems and poor functional status are at an increased risk.

Diagnosis

Diagnosis of POCD remains difficult because of the lack of uniform criteria and unreliable neuropsychological tests capable of detecting mild functional impairment. POCD also shares several features of Alzheimer disease that further confounds the diagnosis. Of note, POCD is not recognized in the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition).

Treatment

Unfortunately, there is no evidence that once POCD is diagnosed it can be successfully treated.

PULMONARY

Pulmonary function is most notably affected by anatomic changes in the elderly. Kyphosis, vertebral compression, calcification of the costal cartilage, and contracture of the intercostal muscles lead to decreased chest wall compliance. Loss of intercostal muscle strength alone can decrease maximum inspiratory and expiratory force by as much as 50%. The loss of the elasticity of the lung parenchyma collapses small airways, leading to increased alveolar compliance with uneven ventilation and air trapping. This perfusion mismatch results in a 0.3- to 0.4-mm Hg decrease per year in arterial oxygen tension. Although total lung capacity remains unchanged, there is a mild increase in functional residual capacity (FRC; 1%–3% per decade) and an increase in residual volume (5%–10% per decade). Thus, vital capacity decreases 20 to 30 mL per year. Mucociliary clearance decreases, whereas swallowing dysfunction, loss of cough reflex, and oropharyngeal colonization contribute to aspiration. Additionally, the neurologic autonomic response to hypoxia and hypercapnia is decreased by 40% and 50%, respectively.

Just before extubation and in the immediate postoperative period, respiratory drive may be decreased because of the incomplete elimination of inhalational anesthetics, opioids, and benzodiazepines. These medication side effects may be more prominent in the elderly because of altered pharmacokinetics and pharmacodynamics.
Aggressive pulmonary toilet using incentive spirometry, early mobilization, and upright positioning, which increases FRC, are absolutes for elderly patients to prevent atelectasis.77,80 Voluntary movement of the chest wall muscles may be limited by pain or physically disrupted with an incision.77 Thoracic and abdominal operations are associated with higher rates of pulmonary complications,79 and it is postulated that manipulation in these cavities results in afferent nerve inhibition of respiratory muscle function.77

Noninvasive ventilation has not been studied in elderly surgical patients; but in other patient populations, it has reduced intubation rates. Although noninvasive ventilation may initially be attempted in the elderly struggling after extubation, the failure rate is still about 30\%.79 A study of 330,000 patients demonstrates an exponential increase in the incident of acute respiratory failure each decade until 85 years of age.81 Unfortunately, we as providers are inaccurate in identifying respiratory failure, attributing confusion, agitation, delirium, and altered level of consciousness to dementia and previous stroke rather than hypoxia and hypercarbia.82 Our patients’ self-perception of dyspnea and bronchoconstriction also decreases with age.83

Mechanical ventilation should not be withheld because of age alone.84,85 After adjusting for severity of illness, Ely and colleagues84 demonstrated that the 75-years-of-age-and-older cohort had an equivalent number of ventilator days, intensive care unit and hospital length of stay, and mortality rate compared with their younger counterparts. Theoretically we would expect the aforementioned physiologic changes with age to affect ventilator weaning.86 Readiness to extubate may be as difficult to assess as need for intubation. Usual tools such as frequency-tidal volume ratio, negative inspiratory force, and minute ventilation are not predictive of extubation failure in the elderly.84,87 For those intubated greater than 7 days, one prospective study of critically ill medical patients found that a rapid shallow breathing index less than 130 may improve the accuracy in predicting successful extubation.88 Once an elderly patient has been on the ventilator for greater than 6 hours per day for more than 21 days, long-term ventilator dependence increases proportionately in those aged 70 years and older.89

Age is not an independent risk factor for perioperative pulmonary complications; comorbidities, especially chronic obstructive pulmonary disease (COPD), have a greater risk association with perioperative pulmonary complications.90 COPD is the single most important predictor of perioperative pulmonary complications in the elderly with a 3- to 4-fold increased risk.90

CARDIOVASCULAR

The most common cause of death in perioperative elderly patients is cardiac.91 In the elderly, it is difficult to decipher if complications arise because of cardiac disease versus the physiologic changes that accompany the normal aging process.

Specific anatomic changes are noted in the heart as aging occurs. The overall weight of the heart increases in women, the ventricular septum thickens proportionally more than the left ventricle wall, and the left atria dilates.91–95 The diameter of the aortic root increases;94 although the valves may become sclerosed and calcified, this has a minor impact on their function.96 In fact, all 4 valves may become dilated,97 explaining the multi-valvular regurgitation in healthy older adults. The actual shape changes from elliptical to spheroid.95 The epicardium’s fat content, especially overlying the right ventricle, increases.91 On a cellular level, the actual number of myocytes decreases, whereas the size of those remaining increases.98 There is an increase in intracellular lipofuscin, the degenerative pigment, amyloid, collagen, and elastin.91,99,100 Within the conduction system, 90% of the sinus node cells are replaced by fat and connective
tissue, and the tracts become fibrosed. These changes also affect the cardiac vasculature, resulting in dilation, intimal thickening, and calcification independent of atherosclerosis. The vessels become less compliant and reactive to nitric oxide and the renin-angiotensin system, resulting in increased systolic blood pressure and pulse pressure, turbulent flow, and elevated pulse wave velocities. In fact, Roman and colleagues demonstrated that the pulse pressure is a better predictor of cardiovascular events than systolic or diastolic blood pressure. Overall, these structural changes result in a stiff heart with decrease contractility and compliance and at risk for sick sinus syndrome, arrhythmias, and bundle branch blocks.

The impact of these structural changes on the function of the heart is difficult to assess with age, frailty, metabolic changes, overall cardiac health, and atherosclerotic disease complicating the picture. Generally, function is divided into systolic and diastolic function. Systolic function is usually preserved as the heart ages. In diastole, the heart is slower to relax, so it fills slower and later in the phase. However, as flow demand is increased, the aged heart is less responsive to catecholamines. Maximum heart rate is decreased. End diastolic volume and stroke volume increase. There is no change in end systolic volume. Peak ejection fraction and cardiac output decrease; overall, the size of the left ventricle increases, leading to decreased or nil reserve with greater risk for cardiac failure.

Fifty percent of the elderly have abnormal resting electrocardiograms frequently caused by the aforementioned anatomic changes. Echocardiograms are excellent in assessing chamber size and function, but can be difficult in the elderly because of chest wall deformities. Likewise, exercise stress tests are limited by the physical ability of older patients. The sensitivity and specificity of dobutamine stress echocardiography to detect myocardia ischemia have not been studied in the elderly, but myocardial perfusion scintigraphy using dipyridamole (Persantine) is well tolerated, with sensitivity, specificity, and safety equivalent to those less than 65 years old.

Myocardial infarction mortality is increased in the elderly: 17.8% in those 75 years and older versus 2.0% in those less than 55 years. In the perioperative period, it is important to remember that only one-third of those older than 85 years will present with classic chest pain. Older patients may present with vague, nonspecific, nonclassic signs and symptoms caused by comorbidities and altered pain sensitivity, such as

- Shortness of breath
- Heart failure
- Pulmonary edema
- Nausea
- Emesis
- Syncope
- Confusion
- Delirium
- Agitation
- Stroke

When assessing perioperative elderly surgical patients in failure, precipitants include anemia, infection, thyroid dysfunction, atrial fibrillation, dietary, and medications. A quick review of the overall picture can be insightful. First, determine if the failure is systolic or diastolic. Systolic failure presents with an insidious onset in patients with hypertension, history of myocardial infarction, diabetes, and chronic valvular insufficiency. They present with progressive shortness of breath, displaced point of maximal impulse (PMI), cardiomegaly, q waves on electrocardiogram, and decreased
left ventricular ejection fraction on echocardiogram.106 Although diastolic failure occurs in patients with similar histories, they have acute pulmonary edema and congestion, an S4 gallop with PMI unchanged, a normal-sized heart with left ventricular hypertrophy on electrocardiogram, and a normal or even increased left ventricular ejection fraction on echocardiogram.106 Treatment varies depending on the cause. Although venodilators like digitalis and diuretics are mainstays in systolic heart failure, they may exacerbate diastolic dysfunction that responds to medications that improve preload and ventricular relaxation like calcium channel blockers, angiotensin-converting enzyme inhibitors, and beta-adrenergic antagonists.106 Unfortunately, the elderly are highly susceptible to the side effects of these medications, which include dehydration, electrolytes disturbances, and further conduction slowing resulting in bradyarrhythmias to name a few.103 As a result, the elderly frequently need lower doses because of impaired excretion.

Arrhythmias are also frequently encountered in perioperative elderly surgical patients. They may present as syncope or as mental status changes, but significant arrhythmias may present without symptoms or with palpitations.103 A syncopal episode with a cardiovascular cause carries a 24\% 1-year mortality rate.107 Single supraventricular premature beats are present in almost all individuals older than 80 years, are usually asymptomatic, and do not require treatment.103 Atrial fibrillation is present in 10\% of patients older than 80 years.108 Unfortunately in the elderly, anti-arrhythmic adverse drug reactions caused by altered metabolic function, drug elimination, and polypharmacy can potentiate conduction abnormalities and ventricular dysfunction.103

Given the elderly’s tenuous nature and sometimes unpredictable response to cardiac medications, more frequent monitoring, follow-up, and closer surveillance to ensure compliance and recognize early signs and symptoms of toxicity and progressing disease are imperative. Truly a multidisciplinary approach is needed involving education, frequent assessment, and careful management. A team approach has proven to reduce readmissions, improve medication compliance, be more cost-effective, and ultimately improve the functional status of patients.109,110 In fact, lack of emotional support is a strong independent predictor of fatal and nonfatal cardiovascular events following a hospitalization in elderly women.111

GASTROINTESTINAL AND NUTRITION

The gastrointestinal tract is one of the systems relatively unchanged functionally by aging.112–115 Dysphagia is a common elderly problem leading to aspiration in the perioperative period. This problem may be caused by decreased senses (olfactory, taste), decreased tongue muscle mass and strength, medications and as a result of neurologic disorders and neurovascular disease.116 Treatment is multidisciplinary involving nursing care, speech therapists, and medical and surgical specialists. There is an increased incidence of certain gastrointestinal disorders in the elderly. Gastroesophageal reflux disease (GERD) is present in about 30\% of the elderly.117,118 There are conflicting data about whether gastric acid secretion and gastric emptying decrease or remain normal in the elderly.116 What is proven extensively through epidemiologic studies is that \textit{Helicobacter pylori} and subsequently gastric ulcer incidence increases with age,119 such that half of all adults are seropositive by 50 years of age. Gastritis and gastric atrophy are 2 of the most common gastrointestinal disorders in the elderly, placing them at risk for gastrointestinal bleeding. The stress in the perioperative period, along with the use of NSAIDs that deplete mucosal prostaglandins may incite bleeding and ulceration.116 Particularly at risk are women,120–122 those patients with a
prior history of peptic ulcer disease, and patients with increased age.123,124 The treatment of GERD and peptic ulcer disease is the same in the elderly: antacids, H\textsubscript{2} receptor antagonists, proton pump inhibitors, sucralfate, misoprostol, and antibiotics for \textit{H pylori} eradication. Care must be taken as elderly are prone to side effects and medication interactions, altering absorption. Antacids may increase sodium and magnesium, affecting the kidneys and causing diarrhea, and alter absorption (antibiotics, quinidine)125,126 as can proton pump inhibitors. Cimetidine may cause confusion with high doses or parenteral administration.125,126 Sucralfate can cause constipation.127,128 Misoprostol may cause diarrhea.128

If an elderly patient develops a gastrointestinal bleed, upper or lower, independent of cause, then mortality can range from 10\% to 25\%.129,130 Bleeds are approached in the same manner in the elderly: assessment, resuscitation, identification of source, and treatment. Vascular ectasias of the colon are primarily a recurrent and subacute elderly disease (two-thirds of patients older than 70 years), but 15\% present with severe hemorrhage.116 Additionally, vascular disease in the elderly often involves the mesenteric vasculature. Despite significant collaterals, embolic disease, ischemic colitis, or severe disease (involving 2 main mesenteric trunks) complicating the perioperative period may be encountered because of arrhythmias or hypotension. Presentation may be subtle, such as a postoperative ileus, or as severe as shock caused by acute intestinal infarction or gastrointestinal bleed in ischemic colitis.116

The liver decreases in weight and number of hepatocytes with age,116 impacting pharmacokinetics. Alcoholic cirrhosis may be encountered in elderly surgical patients without previous knowledge of its existence, impacting surgical and perioperative management.116 More importantly, providers must be cognizant of acetaminophen toxicity, with multiple medications containing acetaminophen and attempts to avoid opioids. As a result of cardiovascular failure in the perioperative period, patients may develop hepatic ischemia or congestion. Although pancreatic function is not altered by age, the main duct increases in size 8\% per decade.131

One of the most commonly encountered perioperative issues arising in the elderly is constipation. Although 60\% to 70\% of the functional elderly have a daily bowel movement, 15\% to 30\% take laxatives on a regular basis.132,133 It is important to identify those at risk and ask daily about bowel function. Opioid use, immobility, decreased oral water intake, and dietary changes while hospitalized contribute to perioperative constipation. In patients naïve to over-the-counter constipation regimens, treatment involves laxatives (milk of magnesia, lactulose, sorbitol, anthraquinones, saline laxatives, combination preparations of polyethylene glycol 3350 and electrolytes [GoLYTELY]) and mild stimulants (senna and bisacodyl).116 Mineral oil is discouraged in those with dysphagia because of the aspiration pneumonitis risk. The elderly should be assessed for impaction if there is no output or diarrhea and manually disimpacted on identification. Enemas may soften the stool in the rectal vault and reach fecal material above manual manipulation.

Finally, chronic vascular occlusion may contribute to abdominal angina, leading to weight loss and malnourishment. Additionally with age, the villi of the small intestine shorten and become clubbed, decreasing the surface area, which is also thought to contribute to malnutrition.113,134,135 More than 70\% of hospitalized elderly patients are malnourished or at an increased nutritional risk, which is associated with increased mortality.136,137 The Academy of Nutrition and Dietetics and the American Society for Parenteral and Enteral Nutrition has provided a consensus for the diagnosis of malnutrition including insufficient nutritional intake, weight, muscle mass and subcutaneous fat loss, fluid overload, and decreased handgrip strength.138 They recommend regular and consistent weight measurements for hospitalized and high-risk patients.138
Unintentional weight loss and decreased appetite in older community-dwelling patients is associated with increased mortality. Similar results are also observed in obese patients older than 70 years. Although a variety of definitions of weight loss exist, it is considered clinically significant if there is a 5% decrease in weight over 1 month’s time period (>5% considered severe), 7.5% decrease in weight over 3 months’ time period (>7.5% considered severe), or 10% decrease in weight over 6 months’ time period (>10% severe). There are several nutrition screening tools available for malnutrition and nutritional risk in older patients. The Mini Nutritional Assessment and the Malnutrition Screening Tool have the highest sensitivity and specificity. Although these are formal tools, data suggest even a simple question such as presence of a good appetite can be predictive of outcomes.

Involuntary weight loss is multifactorial but ultimately is attributed to inadequate intake. Inadequate oral intake is similarly multifactorial because of social, psychiatric, and medical factors. Malignancy and depression are identified as the most frequent causes of malnutrition in elderly patients. Dysphagia, reportedly present in up to 10% of older patients, is also a contributing factor. Nutritional supplementation is often used in elderly patients; however, data suggest morbidity and mortality was noted to improve only in malnourished hospitalized patients older than 75 years. Results of appetite stimulants, such as megestrol, dronabinol, and mirtazapine, are mixed and not definitive for clinically significant and sustained weight gain. This subject is an obvious area ripe for research in the future to determine the impact of intensive preoperative or targeted nutritional supplementation.

RENAI

Total body water is reduced by 10% to 15% in older patients. In contrast, they have a reduced glomerular filtration rate and reduced ability to concentrate urine, which predisposes them to fluid retention and volume overload. Elderly patients are susceptible to acute kidney injury or acute on chronic kidney injury and electrolyte abnormalities. However, the older patient population is unique in that they are at an increased risk of electrolyte disturbances without underlying renal dysfunction, dehydration, and polypharmacy simply as a result of physiologic aging. These disturbances result in increased morbidity and mortality and readmission rates in surgical patients particularly. This condition is further exacerbated by age-related physiologic changes, including renal senescence defined as irreversible functional and structural changes associated with the kidneys of aging patients.

Dehydration with a loss as little as 2% of total body water can result in a significant impairment of physical and cognitive performance. Elderly patients are also more susceptible to water retention and associated electrolyte abnormalities that are exacerbated in the perioperative period, a time of increased physiologic stress. Positive fluid balance is an independent risk factor for mortality in critically ill patients with acute kidney injury.

Glomerular sclerosis leads to a decrease in glomerular mass in the elderly. Creatinine clearance is also reduced. Tubular dysfunction impairs the ability to concentrate urine, leading to electrolyte disturbances. Furthermore, ischemia has also been noted to contribute to nephron loss. Hormonal alterations have been noted to similarly affect fluid and electrolyte balance, particularly reduced levels of renin and aldosterone caused by increased atrial natriuretic peptide secondary to hypertension and increased right atrial filling at baseline. There is also a decreased tubular response to hormones predisposing patients again to fluid and electrolyte abnormalities.
Thirst response is blunted in older patients, resulting in a persistent hyperosmolar state that is further heightened by a reduction in the ability of the kidney to concentrate urine. Dysnatremia in older patients is of particular concern, and age is noted to be an independent risk factor.166 It has been shown reproducibly that particularly hypernatremia is a risk factor for increased mortality.167–169 Hyponatremia, which is more common, is noted to be a risk factor for bone fracture.170–172 Hyperkalemia is a concern as tubular dysfunction impairs the secretion of potassium.173–175 Hyperkalemia is further exacerbated by a decreased response to aldosterone and renin.176 Furthermore, polypharmacy and physiologic stress increase the risk of abrupt alterations in potassium balance. Patients on angiotensin-converting enzyme inhibitors, diuretics, and NSAIDs are particularly susceptible.177,178

Physiologic changes in the perioperative period include systemic neurologic, hormonal, immune, and hematologic responses. Cognitive decline is a risk factor for dehydration.179 Increased secretion of antidiuretic hormone, renin, and aldosterone during stress results in fluid retention. Older patients are increasingly susceptible given their underlying age-related physiologic changes at baseline.157 Salt and water retention has been associated with increased risk of infection, cardiopulmonary complications, and impaired gastrointestinal function as well as a prolonged hospital stay.180–185 Other studies report improved perioperative outcomes with zero fluid balance in the perioperative period.186–189 Positive fluid balance was noted to be an independent factor for immediate perioperative mortality.159 More recent data suggest that surgical patients are often noted to have a hyperchloremic acidosis secondary to the use of normal saline.190,191 Data suggest that chloride-restricted intravenous fluid resuscitation in the perioperative period reduces the incidence of acute kidney injury, improves gastrointestinal blood flow, decreases salt and water retention, and overall decreases the risk of morbidity and mortality, particularly important as this age group is increasingly susceptible to these physiologic changes.192–194 Additionally, studies report in older adults and high-risk patients small boluses of colloid to optimize stroke volume result in improved outcomes and decreased morbidity and mortality.195–200

Knowledge of age-related physiologic changes, particularly renal senescence and hormonal alterations that directly affect the fluid and electrolyte balance in older patients, is key in the perioperative period as even the slightest change in this delicate balance in this patient population can have significant effects on morbidity and mortality. Age-related changes in fluid and electrolyte homeostasis greatly affects the ability of these patients to adapt to situations that exacerbate this homeostasis, like surgical intervention and hospitalization.

OUTCOMES

When reviewing guidelines pertaining to the elderly in perioperative period, there is a paucity. Many guidelines are based on multiple randomized controlled trials that generally exclude the elderly. Furthermore, they are unable to account for the multiple comorbidities the elderly have and the statistical impact the comorbidities have on outcomes.201

Selective use of routine studies guided by the patients’ history (complete blood count, basic blood chemistries, chest radiograph, and electrocardiogram) is supported by the American Society of Anesthesiologists and Cochrane review.202–204 Several cardiovascular risk indices, the American Heart Association, The New England Vascular Surgery Group, and others, attempt to risk stratify the elderly’s cardiovascular risk. While looking at quantitative traditional outcomes, they fail to account for things the elderly cherish the most: independence, functional capacity, and quality
of life. The American Diabetes Association leads the way in recognizing the limitations of its guidelines with respect to the elderly, strongly recommending individualized treatment.205 The American College of Surgeons in collaboration with the American Geriatrics Society has created best-practice guidelines to help surgeons identify high-risk patients, prevent complications, and achieve best outcomes in elderly surgical patients17; unfortunately, these are labor intensive, require extensive financial resources, and are not usually feasible in the emergent setting.

Overall surgical mortality in the elderly has been on the decline even in the most complex, risky operations.206 Furthermore, even in those patients older than 90 years, long-term survival does not seem to be affected by surgical intervention.207 The death rate for elective operations ranges from 0\% to 5.4\%, with 7.0\% to 20.0\% suffering a nonfatal complication;208–210 these statistics hold true with age-matched cohorts.211,212 Unfortunately, many operations are of the emergent nature in the elderly when they do not fair as well. The percentage of emergent operations increases with age: 14.5\% aged 65 to 74 years, 27.9\% aged 75 years and older,209 69.0\% aged 90 years and older.211 Usually the emergent cases are related to infection, intestinal obstruction, incarcerated hernias, and hemorrhage.210,213 Because of the emergent nature, morbidity rates range from 30\% to 68\% and mortality 13.6\% to 31.0\%.209,210,213 In fact, Rigberg and colleagues210 found that all postoperative deaths in patients older than 90 years were emergent operations. With regard to oncologic operations, Dekker and colleagues214 demonstrated that elderly patients who survive the first year following resection of their colorectal cancer have the same cancer survival rate as younger patients. Long-term survival is related to early morbidity and mortality.

As previously mentioned outcomes in elderly patients are not just about morbidity and mortality; independence, functional capacity, and quality of life play a major role. Postoperative cognitive dysfunction impairs nearly 13\% of the elderly 3 months after an operation, double the rate of other age groups.215 In a cohort of elderly patients aged 75 years and older independent at admission, 75\% were not independent at discharge, 15\% of whom were discharged to a nursing home,216 they do not leave the nursing homes, 33\% of those sent to a nursing home after a hip fracture remain there a year later.217 Kemper found that of those who enter nursing homes, 55\% will spend at least 1 year of total lifetime and 21\% will spend 5 years or more.218 Many die, are sent to other hospitals, rehabilitation facilities, and other long-term care facilities. In fact, only 12\% ever return home.219

SUMMARY

The older population continues to grow at an unprecedented rate and is living longer. Thus, surgeons are encountering older patients more frequently and can expect an increase in surgical demand because of this rapidly growing population. This article highlights some of the anatomic and physiologic changes that are a result of aging. These changes can sometimes drastically alter the perioperative care of the elderly, leaving the surgeon to face challenging, complex treatment decisions and ethical questions. Clearly, the management of the older patient population requires meticulous management with a multidisciplinary approach.

REFERENCES

64. Kimball CP. The experience of open heart surgery. 3. Toward a definition and understanding of postcardiotomy delirium. Arch Gen Psychiatry 1972;27:57–63.

143. de Castro JM, Brewer EM. The amount eaten in meals by humans is a power function of the number of people present. Physiol Behav 1992;51:121–5.
165. Lobo DN, Stanga Z, Aloysius MM, et al. Effect of volume loading with 1 liter intravenous infusions of 0.9% saline, 4% succinylated gelatine (Gelofusine) and 6% hydroxyethyl starch (Voluven) on blood volume and endocrine responses: a randomized, three-way crossover study in healthy volunteers. Crit Care Med 2010;38:464–70.

